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InfoQ dimensions
o Data resolution
o Data structure
o Data integration
o Temporal relevance
o Chronology of data and goal
o Generalizability
o Operationalization
o Communication

InfoQ(f,X,g,U) = 
U( f(X|g) ) 

Information quality
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Applied statistics
is about meeting the challenge of 

solving real world problems 
with mathematical tools 
and statistical thinking

2018 ENBIS Box Medal 

2013 RSS Greenfield Medal 

My 
motto

https://blogisbis.wordpress.com/2018/11/20/videos-with-ron-kenett/
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άStatistics is important because it is conceived as

contributing to a causal understanding ...

Statistics can indicate causality even in the

absence of a mechanistic understanding.

But the traditional self-conception of statistics is

that it can rarely say anything about causality.

This is a paradox.έ

Statistikk50 )Ǌ! Some remarks on causality*

Odd O. Aalen

*From a presentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Norway, May 22, 2006
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Data analysis and regression : a second course 
in statistics, Addison-Wesley, 1977

άcausation, though often our major concern, is 
usually not settled by statistical argumentsέ

Frederick Mosteller
1916-2006

John Wilder Tukey 
1915-2000

Causation:
1. Consistency
2. Responsiveness
3. A mechanism



Albert Einstein (1879-1955)

άDevelopment of Western science is based on two

great achievements: the invention of the formal

logical system (in Euclidean geometry) by the

Greek philosophers, and the discovery of the 

possibility to find out causal relationships by

systematic experiment(during the Renaissance).έ

A. Einstein, April 23, 1953
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Jean Piaget (1896 ς1980)
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Piaget's (1936) theory of cognitive development 
explains how a child constructs a mental model of 
the world. His contributions include a stage theory 
of child cognitive development, detailed 
observational studies of cognition in children, and a 
series of tests to reveal different cognitive abilities.

ñThe infantôs hand hits a hanging toy. The infant sees it bob about, then repeats 
the gesture several times, later applying it to other objects as well, developing a 
striking schema for striking. ò

The notion of causality in the infantôs model entails a primitive cause-effect 
relationship between actions and results. For example if Z = ópull string hanging 
from bassinet hoodô Y = ótoy shakesô, the infantôs model contains the causal 
relationship Z Ÿ Y .



W. Edwards Deming (1900-1993)

άTests of variables that affect a process are useful only if they predict 
what will happen if this or that variable is increased or decreased. 

Statistical theory, as taught in the books, is valid and leads to 
operationally verifiable tests and criteria for an enumerative study. 
Not so with an analytic problem, as the conditions of the experiment 
will not be duplicated in the next  trial. 

Unfortunately, most problems in industry are analytic.έ*

10

*From preface to The Economic Control of  Quality of  nufacturedproduct 
by W. Shewhart, 1931
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Jerzy Neyman(1894-1981)

Potential 
outcomes



Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20: 557-585.
Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics 5: 161-215. 

Sewall Wright (1889-1988)

Path Analysis
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The Medical College 
!ŘƳƛǎǎƛƻƴ ¢Ŝǎǘϯ 
όa/!¢ϯύΣ

Undergraduate 
Grade Point 
Average 
(UGPA)

Structural Equation Models 
(SEM)



Contingency tables
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The term contingency table was first used by Karl Pearson in "On the Theory of Contingency and Its 

Relation to Association and Normal Correlation", the Drapers' Company Research Memoirs Biometric 

Series I, published in 1904.
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1857-1936
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Contingency tables
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Contingency tables



16

Contingency tables
In the chapter Contingency and correlation - the insufficiency of causation, 

(The Grammar of Science, 1911), Pearson says: "Beyond such discarded 

fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable 

arcana of modern science, namely, the category of cause and effect."

https://pure.mpg.de/é/item_2é/component/file_2368441/content

https://pure.mpg.de/…/item_2…/component/file_2368441/content


Regression towards the meanΧ.
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Regression 

Line

Equivalence 

Line

άIt is easy to see that consequence of the co-relation must be the variation of the two organs being partly due 
to common causesέ 

Sir Francis Galton (1822-1911)

Galton, F. (1886). "Regression towards mediocrity in hereditary stature". 
The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246ς263



1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Treatment to reduce high levels of a measurement
People with extreme values of the measurement, such as high blood 
pressure, may be treated to bring their values closer to the mean. If they 
are measured again we will observe that the mean of the extreme group is 
now closer to the mean of the whole population, that is, it is reduced. This 
should not be interpreted as showing the effect of the treatment.

Relating change to initial value
We may study the relation between the initial value of a measurement and 
the change in that quantity over time. In antihypertensive drug trials, for 
example, it may be postulated that the drug's effectiveness would be 
different (usually greater) for patients with more severe hypertension. This 
is a reasonable question, but, the regression towards the mean will be 
greater for the patients with the highest initial blood pressures, so that we 
would expect to observe the postulated effect even in untreated patients.

Regression towards the meanΧ.
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Comparison of two methods of measurement
When comparing two methods of measuring the 
same quantity researchers are sometimes tempted 
to regress one method on the other. The fallacious 
argument is that if the methods agree the slope 
should be 1. Because of the effect of regression 
towards the mean we expect the slope to be less 
than 1, even if the two methods agree closely. 

1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Regression towards the meanΧ.
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https://www.ncbi.nlm.nih.gov/pubmed/16921578 .

Stephen Senn (2006), Change from baseline and analysis of covariance revisited, Stat Med.; 25(24):4334-44

https://www.ncbi.nlm.nih.gov/pubmed/16921578
https://www.ncbi.nlm.nih.gov/pubmed/16921578


1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

RepresentativenessΧ.

The hot hand fallacy

Å91% of the fans believe that a player 
has a better chance of making a shot 
after having just made his last two or 
three shots than he does after having 
just missed his last two or three shots

Å84% of the fans believe that it is 
important to pass the ball to 
someone who has just made several 
(two, three, or four) shots in a row
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1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

FramingΧ.

Muller-Lyer optical illusion 

21



David Hume (1711-1776)

1. Analytical vs. empirical claims, 
the former are product of 
thoughts, the latter matter of 
fact

2. Causal claims are empirical

3. All empirical claims originate 
from experience.

"Thus we remember to have seen that species of object we 

call flame, and to have felt that species of sensation we 

call heat. We likewise call to mind their constant 

conjunction in all past instances. Without any farther 

ceremony, we call the one causeand the other effect, and 

infer the existence of the one from that of the other."

22
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https://en.wikipedia.org/wiki/Newton%27s_cradle
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A journey back 
into the past

2020

https://en.wikipedia.org/wiki/Newton%27s_cradle
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ÅObjectives: Visual presentation of relationships between 
Effectand possible Causes

ÅHow?: Listof possible Causes and their Structure(Fishbone)

ÅIndividualand Teamworktool for improvement program 
initiation

ÅPossibility to select critical Causes based on Expert 
Knowledge

Cause-Effect Diagram



Cause-Effect (Ishikawa) Diagram
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Kaoru Ishikawa
1915 - 1989
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Cause-Effect Diagram Methodology

29



Round robin process
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1. You can say άpassέ
2. You can build on 

otherΩs ideas
3. No critique allowed 

(even self)
4. Indicate where to 

note the idea on 
the fishbone 
diagram
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Why?

31
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Why? Why? Why? 

32
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Lost control of a car

33



Flat Tire

Nail

Rock

Blow-out

Glass

Slippery Road

Oil

Rain

Ice

Snow

Mechanical 
Failure

Brake failure

Broken tie rod

Stuck 
accelerator

Driver error

Reckless

Poor training

Poor reflexes

Lost control of a car ςimprovement priorities

34

7

4

2 5

9 participants, 2 votes each to prioritize impact, cost and feasability

Effect

Causes

Causes

Action

To minimize the effect we will 
focus on the causes in green list
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Fishbone Diagram
Scheduling 
problems at 
the dean's 
office
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Force Field Diagram

Flow Chart

Scheduling 
meetings at 
the dean's 
office
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Introduce 
confirmation 

note

Cause and effect

From 25% to 15% 
to conference calls
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P. Spirtes, C. Glymourand R. Scheines, 
"Causality from Probability" Proceedings of 
the Conference on Advanced Computing for 
the Social Sciences, Williamsburg, Va. 1990.

Applicability of probabilistic methods to tasks requiring 
automated reasoning under uncertaintyΧ. Application areas 
include diagnosis, forecasting, image understanding, multi-
sensor fusion, decision support systems, plan recognition, 
planning and control, speech recognition ςin short, almost 
any task requiring that conclusions be drawn from uncertain 
clues and incomplete information.

https://www.sciencedirect.com/science/article/
pii/B9780080514895500059

1988

Judea Pearl (1985)

https://www.sciencedirect.com/science/article/pii/B9780080514895500059
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))P(X)P(X)P(X)P(XP(X)XP(X 543215 =31

)X|)P(X)P(XX|)P(XX|)P(XP(X)XP(X 354133215 =31

X1 X2 X3 X4 X5

Ἔἦ ἦ ἦ ἦ ἦ ȩ

X1 X2 X3 X4 X5 Bayesian Network

Independence

X1 X2 X3 X4 X5 Markov Model
)X|)P(XX|)P(XX|)P(XX|)P(XP(X)XP(X 4534231215 =31

41



Earthquake
Burglary

Radio Call

Five events

Alarm



Earthquake
Burglary

Radio Call

Five events

Alarm

Earthquake

Radio

Burglary

Alarm

Call



time Earthquake Burglary Radio Alarm Call

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1

4 0 0 0 0 0

5 0 1 0 0 0

6 1 0 1 1 1

7 0 0 0 0 0

Five events, over time
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Earthquake
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Burglary
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P(C,A,R,E,B) = P(B)* P(E| B)* P(R|E, B)* P(A|B,E, R)* P(C|A, R,B,E )

P(C,A,R,E,B) = P(B)* P(E)* P(R|E)* P(A|B,E)* P(C|A)

E

R

B

A

C

Earthquake (E) Burglar (B)

Radio (R)

Alarm (A)

Call (C)

A Bayesian Network

45



Earthquake

Radio

Burglary

Call

( | , ) ( | )P Alarm Earthquake Radio P Alarm Earthquake=

P
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d
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n

causes

effect
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What is the effect of earthquake and radio on alarm?

Alarm



Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

What is causing the call?

D
ia

g
n

o
st

ic
s

47

effect



The Law of Total Probability
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Law of Total Probability

P(A)  = SB P(A, B) 

= SB P(A | B) P(B)        where B is any random variable

Why is this useful?  given a joint distribution (e.g., P(A,B,C,D)) we can obtain any άmarginalέ probability  
e.g.,    

P(B)  = SASC SD P(A, B, C, D) 

Less obvious: we can also compute any conditional probability of interestgiven a joint distribution, 

e.g.,   

P(c | b)  = SaSd P(a, c, d | b) 

= 1 / P(b)  SaSd P(a, c, d, b)

where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we need to compute any 
probability of interest.



The Chain Rule
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We can always write

P(a, b, c, Χ z)   = P(a | b, c, Χ. z) P(b, c, Χ z)

(by definition of joint probability)

Repeatedly applying this idea, we can write

P(a, b, c, Χ z)   = P(a | b, c, Χ. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables.

This is the chain rule for probabilities.



Conditional Independence
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2 random variables A and B are conditionally independent given C iff

P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c

More intuitive (equivalent) conditional formulation
A and B are conditionally independent given C iff

P(a | b, c) = P(a | c) OR   P(b | a, c) = P(b | c)   for all values a, b, c

Intuitive interpretation:

P(a | b, c) = P(a | c) tells us that learning about b, given that we already know c, provides no 
change in our probability for a, 

i.e., b contains no information about a beyond what c provides

Can generalize to more than 2 random variables
E.g., K different symptom variables X1, X2,Χ,XK , and C = disease

P(X1, X2,Χ,XK | C) = PP(Xi | C)

!ƭǎƻ ƪƴƻǿƴ ŀǎ ǘƘŜ ƴŀƠǾŜ .ŀȅŜǎ ŀǎǎǳƳǇǘƛƻƴ



Bayesian Networks
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ÅA Bayesian network specifies a joint distribution in a structured form

ÅRepresent dependence/independence via a directed graph  
ÅNodes = random variables
ÅEdges = direct dependence

ÅStructure of the graph ė Conditional independence relations

ÅRequires that graph is acyclic (no directed cycles)

Å2 components to a Bayesian Network
ÅThe graph structure (conditional independence assumptions)
ÅThe numerical probabilities (for each variable given its parent)

In general,

P(X1, X 2,....X N) = PP(X i | parents(X i ) )

The full joint distribution The graph-structured approximation

Earthquake

John calls

Burglary

Alarm

Mary calls



A 3-way Bayesian Network
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A CB
Marginal Independence:
P(A,B,C) = P(A) P(B) P(C)



A 3-way Bayesian Network
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A CB
Markov dependence:
P(A,B,C) = P(C|B) P(B|A)P(A)

A chain



A 3-way Bayesian Network
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A

CB

Conditionally independent effects:
P(A,B,C) = P(B|A)P(C|A)P(A)

B and C are conditionally independentgiven A.

A fork



A 3-way Bayesian Network
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A B

C

Independent Causes:
P(A,B,C) = P(C|A,B)P(A)P(B)

A collider

A car's engine can fail to start  (C) due either to a dead battery  (A) or due to a blocked fuel pump (B). Ordinarily, we assume
that battery death and fuel pump blockage are independent events, because of the essential modularity of such 
automotive systems. Thus, in the absence of other information, knowing whether or not the battery is dead gives us no 
information about whether or not the fuel pump is blocked. However, if we happen to know that the car fails to start (i.e., 
we fix common effect (C), this information induces a dependency between the two causes battery death and fuel blockage. 
Thus, knowing that the car fails to start, if an inspection shows the battery to be in good health, we can conclude that the 
fuel pump must be blocked.

Battery

Fuel 
pump



Burglary example revisited
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Consider the following 5 binary variables:
B = a burglary occurs at your house

E = an earthquake occurs at your house

A = the alarm goes off

J  = John calls to report the alarm

M = Mary calls to report the alarm

What is P(B | J, M) ?  

ÅWe can use the full joint distribution to answer this question
This requires 25 = 32 probabilities

ÅAlternatively, we can use prior domain knowledge to come up with a Bayesian 
Network with fewer probabilities

Earthquake

John calls

Burglary

Alarm

Mary calls



Constructing a Bayesian Network

Order the variables in terms of causality

e.g., {E, B} -> {A} -> {J, M}

P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B)

~  P(J, M | A) P(A| E, B) P(E) P(B)

~  P(J | A) P(M | A) P(A| E, B) P(E) P(B)

These causality assumptions are reflected in the graph structure of the Bayesian Network

Unconstrained joint distribution requires O(2n) probabilities. If we have a Bayesian 
network, with a maximum of k parents for any node, then we need O(n 2k) probabilities. 
Example: Full unconstrained joint distribution with n = 30  needs 109 probabilities for full 
joint distribution but binary Bayesian network with n = 30, k = 4, requires only  480 
probabilities.

57



The Burglary Bayesian Network Structure

58



Constructing the Bayesian Network
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P(J, M, A, E, B) = 

P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B)

There are 3 conditional probability tables (CPDs) to be determined:
P(J | A),  P(M | A),  P(A | E, B) 

Requiring 2 + 2 + 4 = 8 probabilities

And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities

These probabilities come from

ÅExpert knowledge

ÅFrom data (relative frequency estimates)

ÅOr a combination of both

Earthquake

John calls

Burglary

Alarm

Mary calls



The Bayesian Network
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10 probabilities
Versus

25-1=32-1=31



The Bayesian Network for a different variable ordering
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The Bayesian Network for a different variable ordering
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Inference (Reasoning) in Bayesian Networks

Consider answering a query in a Bayesian Network
Q = set of query variables

e = evidence (set of instantiated variable-value pairs)

Inference = computation of conditional distribution P(Q|e)

Examples
P(Burglary | Alarm)

P(Earthquake | JCalls, MCalls)

P(JCalls, MCalls| Burglary, Earthquake)

We can use the structure of the Bayesian Network  to answer such queries efficiently  

Earthquake

John calls

Burglary

Alarm

Mary calls
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P(B|A)=P(A|B)P(A)/P(B)



Example
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D

A

B

C F

E

G

P(A, B, C, D, E, F, G) is modeled as P(A|B)P(C|B)P(F|E)P(G|E)P(B|D)P(E|D)P(D) 



Example
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D

A

B

c F

E

g

Say we want to compute P(A | c, g)



Example
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D

A

B

c F

E

g

Direct calculation:  P(A|c,g) = SBDEF P(A,B,D,E,F | c,g)

Complexity of the sum is O(m4)



Example
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D

A

B

c F

E

g

Reordering:

SD P(A|B) SD P(B|D,c) SE P(D|E) SF P(E,F |g)



Example
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D

A

B

c F

E

g

Reordering:

SB P(A|B) SD P(B|D,c) SE P(D|E) SF P(E,F |g)

P(E|g)



Example
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D

A

B

c F

E

g

Reordering:

Sb p(a|b) Sd p(b|d,c) Se p(d|e) p(e|g)

p(d|g)



Example
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D

A

B

c F

E

g

Reordering:

SB P(A|B) SD P(B|D,c) P(D|g)

P(B|c,g)



Example

71

D

A

B

c F

E

g

Reordering:

Sb P(A|B) P(B|c,g)

P(A|c,g) Complexity is O(m), compared to O(m4)



Real-valued Variables
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Bayesian Networks can also handle Real-valued variables
ÅIf we can assume variables are Gaussian, then the inference and theory for Bayesian 

networks is well-developed,
ÅE.g., conditionals of a joint Gaussian is still Gaussian, etc.

ÅIn inference we replace sums with integrals

ÅFor other density functions it dependsΧ
ÅCan often include a univariate variable at the άedgeέ of a graph, e.g., a Poisson conditioned on 

day of week

ÅBut for many variables there is little know beyond their univariate properties, e.g., 
what would be the joint distribution of a Poisson and a Gaussian? (its not defined)

ÅCommon approaches in practice
ÅPut real-valued variables at άleaf nodesέ (so nothing is conditioned on them)

ÅAssume real-valued variables are Gaussian or discrete

ÅDiscretize real-valued variables



Take home bullets
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üBayesian networks represent a joint distribution using a graph

üThe graph encodes a set of conditional independence assumptions

üAnswering queries (or inference or reasoning) in a Bayesian network 
amounts to efficient computation of appropriate conditional 
probabilities

üProbabilistic inference is intractable in the general case but can be 
carried out in linear time for Bayesian networks
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http://www.lighttwist.net/wp/uninet

https://cran.r-project.org/web/packages/bnlearn

http://www.lighttwist.net/wp/uninet
https://cran.r-project.org/web/packages/bnlearn


75

MSBNx is a component-based 
Windows application for creating, 
assessing, and evaluating Bayesian 
Networks, created at Microsoft 
Research

www.bayesfusion.com

Decision Systems Laboratory. 
Department of Information 
Science and Telecommunications 
and the Intelligent Systems 
Program at the University of 
Pittsburgh.

https://www.microsoft.com/en-
us/download/confirmation.aspx?id=52299

https://msbnx.azurewebsites.net/msbnx/what_is_msbnx.htm

http://www.bayesfusion.com/
https://www.microsoft.com/en-us/download/confirmation.aspx?id=52299
https://msbnx.azurewebsites.net/msbnx/what_is_msbnx.htm


The basic building block of the system is a one hour model of 
the intake and utilization of food, blood glucose and insulin. 
The nodes BG and CHO acts as status variables denoting 
respectively the glucose in the blood stream and the glucose 
reservoir in the stomach. Intermediate nodes are primarily 
describing processes that utilizes the glucose
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20% BOT12
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13% BOT12
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39% BOT12
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Chatillon, G. ( 1984) The Balloon Rules for a Rough Estimate of the 
Correlation Coefficient, The American Statistician,  38(1), 58-60.

But: Correlation is not causationΧ
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Correlation is not causationΧ
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Scatterplot of Y vs x
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Correlation is not causationΧ

Y = ( 5 X - X2 ) / ( 1 - 2 X -2 X2 )
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Scatterplot of Y vs x

98

No 
correlation 
does not 
imply no 
causation

Correlation is not causationΧ

Y = ( 5 X - X2 ) / ( 1 - 2 X -2 X2 )



The population of Oldenburg in Germany and the 
number of observed storks in 1930-1936*

year 1930193119321933193419351936

Population 

in 

thousands

50 52 64 67 69 73 76

Number of 

storks
130150175190240245250

* Box, Hunter and Hunter, Statistics for Experimenters: An Introduction to 
Design, Data Analysis, and Model Building, J. Wiley, 1978 
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Correlation is not causationΧ

No
correlation 
does not 
imply no
causation
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Time is a confounding variable

Spurious correlation
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Correlation 
does not 

imply 
causation

1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.
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Spurious correlation
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Spurious correlation
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https://webpower.psychstat.org/models/cor01/

https://cran.r-project.org/web/packages/WebPower/index.html
http://www.divms.uiowa.edu/~rlenth/Power/

How many 
observations 
are needed to 

determine 
significant 

correlation?

https://webpower.psychstat.org/models/cor01/
https://cran.r-project.org/web/packages/WebPower/index.html
http://www.divms.uiowa.edu/~rlenth/Power/
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On spurious 
correlations

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations
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On spurious 
correlations

Causality 
effects?
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On spurious 
correlations

Pearson, K. (1897) Mathematical 
contributions to the theory of 
evolution. On a form of spurious 
correlation which may arise when 
indices are used in the measurement 
of organs. Proceedings of the
Royal Society of London, LX, 489-502.

SD={xÍR+
D :  x1+x2ҌϊϊϊҌxD = k}

subcompositionalcoherence: 
Using full composition or 
using subcomposition, one 
should make the same 
inference about relations 
within the common parts. 

The correlation coefficient is 
not subcompositionaly
coherent.

Compositional data
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On spurious 
correlations

Full composition Subcomposition

SD={xÍR+
D :  x1+x2ҌϊϊϊҌxD = k} Compositional data



Agenda
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1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks

4. Randomization in experimental designs

5. Propensity scores in observational studies

6. Counterfactuals and do calculus

7. Personalized medicine, condition based maintenance and Industry 4.0

8. Future research areas
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άNo aphorism is more frequently repeated in connection with field trials, than 
that we must ask Nature few questions, or, ideally, one question, at a time. 
The writer is convinced that this view is wholly mistaken. Nature, he suggests, 
will best respond to a logical and carefully thought out questionnaire. A 
factorial design allows the effect of several factors and interactions between 
them, to be determined with the same number of trials as are necessary to 
determine any one of the effects by itself with the same degree of accuracy.έ 

R.A. Fisher (1926). The arrangement of field experiments, Journal of the Ministry of Agriculture of Great 
Britain33, 503ς513.





113

An implicit definition of causal effects by Fisher is the following:

If we say, ΨThis boy has grown tall because he has been well fed,Ω we are 
not merely tracing out cause and effect in an individual instance; we are 
suggesting that he might quite probably have been worse fed, and that in 
this case he would have been shorter. We are, in fact, suggesting that 
existing differences of nutrition can account for differences of stature 
comparable to the standard deviation of stature. Now this is just what is 
meant when we speak of nutrition as a cause of variability; we thereby 
mean that in a population absolutely uniform in regard to other causes, 
such as breeding and exercise, existing differences of nutrition would 
produce a certain variabilityτin fact, that a certain percentage of the 
variance must be ascribed to nutrition.

Fisher RA (1919) The causes of human variability. The Eugenics Review;10(4): 213-220.
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In the 1920s RA Fisher presented randomizationas an essential ingredient 
of his approach to the design and analysis of experiments, validating 
significance tests. In its absence, the experimenter had to rely on his 
judgement that the effects of biases could be discounted. 

Twenty years later, Bradford Hill promulgated the random assignment of 
treatments in clinical trials as the only means of avoiding systematic bias 
between the characteristics of patients assigned to different treatments. 
The two approaches were complementary, Fisher appealing to statistical 
theory, Hill to practical needs. The two men remained on good terms 
throughout most of their careers.

Peter Armitage (2003) Fisher, Bradford Hill, and randomization, International Journal of Epidemiology 32:925ς928
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Strength(effect size): A small association does not mean that there is not a causal effect, though the larger the 
association, the more likely that it is causal.
Consistency(reproducibility): Consistent findings observed by different persons in different places with different 
samples strengthens the likelihood of an effect.
Specificity: Causation is likely if there is a very specific population at a specific site and disease with no other likely 
explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal 
relationship.
Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and 
expected effect, then the effect must occur after that delay).
Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some 
cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed: 
greater exposure leads to lower incidence.[
Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the 
mechanism is limited by current knowledge).
Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect. 
However, Hill noted that "... lack of such [laboratory] evidence cannot nullify the epidemiological effect on 
associations".
Experiment: "Occasionally it is possible to appeal to experimental evidence".
Analogy: The effect of similar factors may be considered.

Bradford Hill, A. (1953). Observation and experiment. New England Journal of Medicine 248:995-1001
Bradford Hill, A.  (1965). The environment and disease: association or causation? Proceedings of the Royal 
Society of Medicine 58:295-300
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Richard Doll
(1912 ς2005) 

Austin Bradford Hill
(1897-1991

Br Med J. 1950 Sep 30; 2(4682): 739ï748.

Smoking and Carcinoma of the Lung

Richard Doll and A. Bradford Hill



Cornfield Inequality

R0 is the observed relative risk between an exposed and unexposed 
group, which could be explained by an unmeasured confounder, U. 
RO is no greater than the ratio of the prevalence of U in the exposed to 
that in the unexposed population. RO RU , where RU is the ratio of risk 
in those with U compared to those without U. 

Cornfield J (1956). A statistical problem arising from retrospective studies. Proceedings 3rd 
Berkeley Symposium on Mathematical Statistics, 4:135ς48.

Lung cancer in asbestos workers: relative risk of asbestos exposed workers dying from lung 
cancer is 6.8 times their expected number in general population. 

60% of all males smoke, 80% of males in asbestos-related occupations. The prevalence ratio, 
0.8/0.6 = 1.33, is much less than RO = 6.8, so CornfieldΩs inequality implies that smoking cannot 
explain the entire association between asbestos and lung cancer. 117



άThe consistency of all the epidemiologic and experimental 
evidence also supports the conclusion of a causal relationship with 
cigarette smokingΧresults in animals are fully consistent with the 
epidemiologic findings in man.

When a demonstrable parallelism exists between epidemiologic 
data and laboratory findings, greater significance accrues to both.έ

Cornfield J, HaenszelW, Hammond EC, Lilienfeld AM, ShimkinMB, WynderEL (1954)  Smoking 
and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst 1954;22:

Cornfield Inequality
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Scoping

Initial 
assessment

Screening

Fractional
designs

Robustness

Robust
designs

Optimizing

Response
surfaces

Gain Knowledge Build
Confidence

Design of Experiments Strategy

Replicates and pseudo-replicates (Hurlbert): 
https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html

https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html
https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html
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Before you leave these portals

To meet less fortunate mortals

There's just one final message

I would give to you

You all have learned reliance

On the sacred teachings of science

So I hope, through life you never will decline

In spite of philistine

Defiance

To do what all good scientists do

Experiment

Make it your motto day and night

Experiment

And it will lead you to the light

The apple on the top of the tree

Is never too high to achieve

So take an example from Eve

Experiment

Be curious

Though interfering friends may frown,

Get furious

At each attempt to hold you down

If this advice you'll only employ

The future can offer you infinite joy

And merriment

Experiment

And you'll see Mabel Mercer sings Cole Porter
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When asked: How you 
would handle a random 

order with a 
perceptible pattern? 

Fisher responded that 
he did not understand 
the question: άI would 
of course rerandomizeέ

D.R. Cox (personal 
communication, 

26/2/2019)
Don Rubin, Annual meeting of Israeli Statistical Association,31/5/ 2018



On randomization and 
re-randomization
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A treatment is applied 
as T1 or T2.

What is the treatment effect?
Is the effect at T2 greater 

than the effect at T1?
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3.35897

0.006051

0

Distribution Plot
T, df=7
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Following this 
introduction,
Cox discusses three 
approaches marked 
below in red, green 
and blue.

Further discussion is 
marked in yellow.
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